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Abstract
We consider tunnelling between a metal partially gapped by charge density
waves (CDWM) and an ordinary metal (M) or a ferromagnet (FM) separated
by an insulator (I) in an external magnetic field H . Zeeman paramagnetic
splitting is assumed to dominate in the CDWM over orbital magnetic effects.
The quasiparticle tunnel current J and relevant differential conductance G
are calculated as functions of the bias voltage V . The peaks of G(V ),
originating from the electron density of states singularities near the charge
density wave gap edges, were shown to be split in the magnetic field, each
peak having a predominant spin polarization. This effect is analogous to
the H -induced splitting of G(V ) peaks obtained by Tedrow and Meservey
for junctions between normal metals and superconductors (S). Thus, it is
possible to electrically measure the polarization of current carriers in such a
set-up, although the behaviours of G(V ) in the two cases are substantially
different. The use of M–I–CDWM junctions instead of M–I–S ones has certain
advantages. The absence of the Meissner effect, which weakens the constraints
upon the junction geometry and electrode materials,comprises the main benefit.
The other advantage is the larger energy range of the charge density wave gaps in
comparison to that for superconductors’ gaps, so that larger H s may be applied.

1. Introduction

Electron tunnelling between superconducting (S) and ferromagnetic (FM) electrodes in a
magnetic field provides a powerful method for studying both electron properties of the
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paired states and the spin-split band structure of the itinerant electron spectrum [1, 2]. The
main practical goal of those investigations consists in the determination of the electron spin
polarization P inside the ferromagnet at its Fermi level, which is defined as

P = NFM− − NFM+

NFM− + NFM+
, (1)

where NFMs (s = ∓) is the density of states (DOS) of the ‘majority’ (−) or ‘minority’ (+) of
electrons at the Fermi level of the FM with spins directed opposite to (along) the direction of
the magnetic field H , respectively. At the same time, the corresponding ‘majority’ of electron
magnetic moments µel are directed along H , since µel = −µ∗

B < 0. Here, µ∗
B = eh̄/2m∗c

is the effective Bohr magneton, e is the elementary charge, h̄ is Planck’s constant, c is the
velocity of light and m∗ is the effective mass of the current carriers in the FM. Definition (1)
is not unique, and transport properties may be described, e.g., by a similar combination but
involving majority and minority current densities rather than NFM∓ [3]. A proper choice is
important for calculations in specific cases, but for the aspects of the problem discussed here
all changes might be reduced to a renormalization of the free parameter P of the theory.

According to the seminal idea of Tedrow and Meservey [1, 4], the polarization P may
be expressed in terms of the differential tunnel conductivity G(V ) ≡ d J/dV taken at definite
voltages V and measured in a non-zero external magnetic field H . Here J is the tunnel current
through a S–I–FM junction (I stands for an insulator). The method should work in this set-up
because the initially identical peaks of conductivities G−(V ) and G+(V ) from the two spin
subbands shift due to the Zeeman effect in the superconducting films [5] and their amplitudes
deform downwards and upwards non-symmetrically when the field is switched on.

Unfortunately, the application of this scheme, promising in principle, led to a deduced P
of the wrong positive sign (i.e. the majority of the magnetic moments of tunnelling electrons
were found to be in the field direction) for the junctions Al–Al2O3–FM, with FM = Ni
and Co, whereas the band calculations predicted that the minority spin electrons should
give the prevailing contribution to the DOS at the Fermi energy level and, hence, to the
overall current [1, 6]. To solve the apparent controversy, a number of theoretical studies
were carried out, changing the starting naive picture of the tunnelling process. First, it was
recognized that the tunnelling spin-split DOSs for ferromagnets differ from the band ones
because the probability of the electron penetration into the barrier region depends on the kind
of intermediate electronic states involved [1, 6–8]. The second required modification makes
allowance for the non-ohmic (Fowler–Nordheim) character of conductivity caused by the
electric field distortion of the primordial barrier’s rectangular shape [9]. Finally, the Zeeman
splitting of the G(V ) peak in the superconducting electrode is drastically diminished by spin–
orbit interactions especially effective for heavy elements, with the respective scattering rate
proportional to Z 4, where Z is the atomic number [1, 10]. Broadly speaking, the modern
approaches treat the whole junction as a single entity and take into account the interface states
and possible structural disordering [6, 11]. Moreover, one should take into account that d
electrons in the FMs may be not only localized but also itinerant, the latter participating in
tunnelling [7].

One should also bear in mind that the paramagnetic mechanism of the superconductivity
suppression [5, 12–14], with the spin splitting of G(V ) being its clear indication, can
dominate over the orbital (Meissner) depairing [15, 16] only in special situations. Thin film
superconducting electrodes of the Al–Al2O3–FM sandwich with the magnetic field parallel to
the junction plane exhibit a typical example of such a behaviour, since the orbital depairing
quantity αparallel = e2d2 DH 2/6h̄ is small for thin enough films and a small enough mean
free path l [1, 16, 17]. Here d is the film thickness, D = vFl/3 is the diffusion constant,
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vF is the Fermi velocity of the electrons in Al. In the general case, all the listed factors act
simultaneously and their interplay is rather complicated.

Hence, it becomes clear that the resources for selecting proper superconducting covers
are not very numerous. At the same time, the use of the paramagnetic effect in non-magnetic
electrodes to probe the ferromagnetic properties of the counter-electrodes seems quite helpful.
Therefore, we propose a new class of tunnelling partners for the ferromagnetic materials,
namely, metals partially gapped by charge density waves (CDWs)—CDWMs [18–23]. So, the
tunnelling scheme now has the form CDWM–I–FM. An external magnetic field stimulates a
paramagnetic effect in the CDWM analogous to that in superconductors [24–26]. On the other
hand, the giant diamagnetic (Meissner) response does not appear for CDWMs at all because
this state lacks superfluid properties [27, 28]. As for the spin–orbit coupling, which leads to
harmful spin flips [10], its role can be diminished by an adequate choice of the light-atom
constituents for CDW materials.

But in any case, since the critical temperature Td of the CDW transition usually is much
larger than its superconducting counterpart Tc and the same remains true for the corresponding
energy gaps � and �, a much larger Zeeman splitting can be obtained for CDWMs in
comparison to that in superconductors from the viewpoint of the paramagnetic limit. Then,
the existing spin–orbital smearing, determined in either case by a dimensionless parameter
b = h̄/3�τso (here � means� or�) [1, 17, 29, 30], would not totally suppress the separation
between the G+(V ) and G−(V ) CDW peaks for the same magnitude of the spin–orbital
scattering amplitudes h̄/τso as in superconductors.

Below, our reasoning is supported by specific calculations of the paramagnetic splitting.
It is shown that characteristic features of G(V ) for CDWM–I–FM junctions in the magnetic
field are unlike those for S–I–FM ones revealing, in particular, much intrinsic asymmetry with
respect to the bias voltage.

2. Behaviour of CDW metals in a magnetic field

The properties of the partially gapped CDWM electrode are characterized in the framework
of the Bilbro–McMillan model [23, 35, 36], originally applied to CDW superconductors.
According to this approach, which describes with equal success the Peierls insulating
state in quasi-one-dimensional substances [18, 37] and the excitonic insulating state in
semimetals [28, 38], the Fermi surface (FS) consists of three sections. Two of them (i = 1, 2)
are nested, with the corresponding fermion quasiparticle spectrum branches obeying the
equation

ξ1(p) = −ξ2(p + Q), (2)

where Q is the CDW vector. So, the electron spectrum here becomes degenerate (d) and a
CDW-related order parameter appears. The rest of the FS (i = 3) remains undistorted under
the electron–phonon (the Peierls insulator) or Coulomb (the excitonic insulator) interaction and
is described by the non-degenerate (n) spectrum branch ξ3(p). A uniform dielectric (CDW)
order parameter �̃ appears only on the nested FS sections. The extent to which the FS is
dielectrically gapped is described by the parameter

µ = Nd(0)

Nd(0) + Nnd(0)
, (3)

where Nd(nd)(0) is the electron DOS at the d(nd) FS section above Td. In essence, it is a relative
portion of the FS, which is gapped and can be determined, in principle, by resistive, specific
heat, or optical experiments (see the relevant references and discussion in our review [23]).
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The CDWM phase, characterized by a matrix dielectric order parameter �̃αγ

im , is described,
in the presence of the external magnetic field H and without making allowance for any
orbital diamagnetism, by a system of Dyson equations for the normal Gi j temperature Green
functions [39]. Latin subscripts in �̃αγ

im correspond to the FS sections, while Greek superscripts
reflect the spin structure of the order parameters.

The orbital influence of the magnetic field on CDWM thermodynamics, being not
so large as for superconductors, can nevertheless exist, at least in principle. That is, if
the nesting conditions are imperfect (which is always the case) and the Zeeman splitting
effects are negligible, a transverse magnetic field, which reduces the quasiparticle spectrum
dimensionality, results in an increase of Td. We note that a similar growth was also observed
for the critical temperature TN of the spin density wave (SDW) state [40–42]. Moreover, field-
induced SDWs were predicted [40, 43–45] and observed for organic substances [46, 47]. The
situation for CDWs is more complicated, since in that case the magnetic field acts not only
diamagnetically but also paramagnetically [25, 26].

In any case, for present purposes one can disregard the diamagnetic effect while
investigating the spin-split peaks of the differential conductivity for normal metals with CDW
distortions. Of course, this does not mean that Td itself does not depend on H if one goes beyond
the approximation adopted in this publication. Since theoretical analysis of a simultaneous
action of orbital and Pauli terms may lead to ambiguous results for Td(H ) or�(H ), it is more
useful to look at the available experimental data.

For the majority of CDW substances, Td is of the order of hundreds of
kelvins [18, 19, 23, 35] (for SmTe3, the estimated Td ≈ 1300 K is even substantially
higher than the melting temperature of 1096 K [48]) and, as a consequence, the magnetic
fields necessary for conspicuously altering Td are inaccessible to experimentalists. There are,
however, several compounds with smaller Td, for which both the DOS spin splittings and the
dependences Td(H ) can be observed relatively easily. First of all, the A15 compound V3Si with
Td(H = 0) = 20.15 K should be mentioned. Its investigation in the magnetic field showed [49]
that the field-induced CDW suppression�Td ∝ −H 2 and is small indeed: even for a very large
H = 156 kOe the correction was only 0.6 K. Organic substances α-(ET)2MHg(SCN)4 (M =
K, Tl, Rb, etc) with Td = 8–10 K (at the pressure p = 1 bar and H = 0) constitute another
promising class of CDW objects [26, 50–52] with an interplay of orbital and Pauli effects in
the magnetic field [53]. There is even a point of view [54, 55] that the diamagnetic orbital
response in those compounds is connected to non-equilibrium persistent currents. It should be
particularly emphasized that the quadratic decrease of Td with H , similar to that in V3Si, was
found [56] for the extremely anisotropic Peierls quasi-one-dimensional metal Per2[Au(mnt)2]
(‘Per’ and ‘mnt’ mean perylene and maleonitriledithiolate) with Td(H = 0) = 12.2 K. Later,
experimentalists managed to completely suppress the CDW state in this substance [57] and
the related one Per2[Pt(mnt)2] with Td(H = 0) = 8 K [58]. These observations are in
accordance with the theory [59, 60] based on a close analogy between CDW insulators and
superconductors.

Mathematically, the similarity between paramagnetic properties of two collective states
that manifest drastically different kinetic behaviour is described by the famous equation

ln

(
T

T0

)
+ Reψ

(
1

2
+ i
µ∗

B H

2πT

)
− ψ

(
1

2

)
= 0, (4)

whereψ (x) is the digamma function and T0 is equal either to Td for Peierls insulators or to Tc for
superconductors. Recall that for the latter the Pauli spin energy term reduces Tc gradually until
Tc(H )/Tc(H = 0) becomes 0.566, when the temperature-driven phase transition becomes of
the first kind [5, 61–63].
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Unfortunately, the type of the CDW phase transition in the magnetic field for
Per2[Au(mnt)2] was not studied in [57, 58]. It is remarkable that after the initial CDW state
in Per2[Pt(mnt)2] has been suppressed above H ≈ 200 kOe, further enhancement of H leads
to the emergence of new field-induced CDW states, which in their turn disappear when H
exceeds 400 kOe [58].

All the aforesaid concerned thermodynamics and it does not mean that the magnetic field
exerts no influence on various bulk transport properties of the CDWMs. On the contrary,
diamagnetic (orbital) effects in extremely high quantizing H may be strongly pronounced, as
was shown, e.g., for NbSe3, nominally pure and doped by 3d ferromagnetic metals [64–66].
But we emphasize that the observed non-linear and oscillatory galvanomagnetic phenomena
reveal themselves for H larger than and comparable to the paramagnetic limit, whereas the
spin splitting investigated become apparent and should be studied at smaller fields.

Thus, while studying the Pauli paramagnetic splitting in normal CDW materials, no
restrictions from above appear on the H amplitude except the natural limit µ∗

B H < �0/
√

2,
where the quantity�0 ≡ π

γ
Td is an amplitude of the CDW order parameter at the temperature

T = 0, γ = 1.78 . . . is the Euler constant. The inequality above represents the paramagnetic
limit H CDWI

p for a CDW insulator [24, 25, 50, 67], which in a first approximation has the same
form as and similar origin to its counterpart H BCS

p for superconductors. For a partially gapped
CDWM, the paramagnetic limit is somewhat smaller [68], namely,

H CDWM
p = �0

µ∗
B

√
µ

2
, (5)

because 0 � µ � 1 (see equation (3)). The Pauli paramagnetic suppression of the CDW order
parameter is due to the fact that such electron–hole pairing couples the bands (in the excitonic
insulator) or the different parts of the one-dimensional self-congruent band (in the Peierls
one) with the same spin direction, in contrast to the SDW case, where current carriers with the
opposite spin directions are paired. When the magnetic field is switched on, both the congruent
FS sections having the chosen spin projection shift either up or down in energy. Therefore,
the nesting CDW vectors Q+ and Q− do not coincide any more, and the initial CDW state is
gradually destroyed [24]. One should bear in mind that the limiting value equation (5) is a
consequence of the basic mean-field theory making no allowance for specific CDW structures,
commensurability effects or rearrangement of CDWs in the magnetic field (see above). If those
phenomena are taken into account, actual CDWs may survive the fields larger than H CDWM

p .
Indeed, such a robustness of the CDW state was recently observed in Per2[Au(mnt)2] [69].

In the conjectured absence of the orbital magnetism, the thermodynamics of the CDWM
in a magnetic field is similar to that of the Bardeen–Cooper–Schrieffer (BCS) superconductor,
where the diamagnetic phase with the homogeneous � and the initial Tc survives for low
enough T with growing H until H reaches the Clogston–Chandrasekhar value Hp [63, 70] and
the first-kind field-induced transition into the normal state occurs. Since we are going to deal
with smaller fields, the intriguing problem of the non-homogeneousstate [24] analogous to the
Larkin–Ovchinnikov–Fulde–Ferrel one in ordinary superconductors for H � Hp will be not
touched upon. Hence, making allowance for the spin-singlet structure (CDWs) of the matrix
self-energy part �̃αβ

i j = �̃δαβ in the weak coupling limit, we are to consider an equation for

the order parameters �̃ in the case H = 0. We assume the function �̃(T ) to be a BCS-like
one, although in experiment it usually shows a ‘generalized’ BCS-like form. That is, in the
coordinates �̃(T )/�̃(T = 0), versus T/Td, the data follow the Mühlschlegel curve, whereas
the ratio 2�0/kBTd essentially exceeds the BCS weak coupling limit (such a behaviour is
described by the phenomenological scheme [71]). Here kB is the Boltzmann constant. For
example, in NbSe3 with its two CDW transitions at T low

d = 59 K and T high
d = 145 K [23, 35],
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the respective ratios, as was shown by direct tunnelling studies [72], fall into the ranges of
11.8–14.3 and 11.4–14.4.

3. Current–voltage characteristics. Theory

While examining current–voltage characteristics (CVCs), for the sake of definiteness, the bias
voltage V is chosen as the difference between voltages at the itinerant (Stoner) FM and a
CDWM: V ≡ VFM − VCDWM.

It is presumed that for H high enough to produce experimentally resolved splitting of
the electron DOS peaks, all domains inside the ferromagnet are completely aligned in the
field direction [1], We also anticipate that the initial bulk polarization of a quasiparticle is
preserved during the tunnelling process, i.e. the influence of the FM–I interface on the tunnel
current is totally neglected. We fully recognize that, generally speaking, such is not the case,
the boundary and disorder effects being very important [2, 3, 6, 11, 31–34]. However, an
account of these complications may be postponed until the specific CDWM–I–FM junctions
are produced. The main goal of this publication is to consider the very possibility of the new
type of counter-electrodes in tunnel junctions for studying magnetic materials.

Making use of the BCS function �̃(T ) and following the Green function method developed
for BCS superconductors by Larkin and Ovchinnikov [73], we calculate a quasiparticle tunnel
current J (V ) between a ferromagnet and a CDWM. The particular case of P = 0 and H = 0
was treated in our previous publications that contain necessary technical details [74, 75].

Under an assumption that there is no spin flipping while tunnelling, the overall tunnel
current J can be described as consisting of different terms Ji∓ having the same form

Ji∓ ∝ Re
∫ ∞

−∞
dω′

∫ ∞

−∞
dω

Im GCDWM
i∓ (ω′ ± µ∗

B H )GFM∓ (ω ± µ∗
B H )

ω′ − ω + eV + i0
(6)

and corresponding to various combinations of the CDWM and FM spin-dependent temporal
Green functions. The upper (lower) sign corresponds to the ‘majority’ (‘minority’) spin
orientation, respectively. In the basic approach adopted here, there is no problem with
GFM∓ (ω). At the same time, there emerge six quantities GCDWM

i∓ (ω) instead of a unique spin-
projection pair GBCS∓ (ω) specifying the BCS state [5, 14]. The former can be obtained from
the temperature Green functions of the CDWM:

G∓
nd (p, ωn) = iωn ± µ∗

B H + ξ3 (p)(
iωn ± µ∗

B H
)2 − ξ2

3 (p)
, (7)

G∓
d (p, ωn) = iωn ± µ∗

B H + ξ1 (p)(
iωn ± µ∗

B H
)2 − ξ2

1 (p)−�2
, (8)

G∓
c (p, ωn) = �̃(

iωn ± µ∗
B H

)2 − ξ2
1 (p)−�2

. (9)

After the straightforward procedure [73, 75], we arrive at the current

J (V ) =
∑

f =n,d,c;s=−,+
J f s(V ), (10)

where

Jn∓ = (1 − µ) (1 ± P) V

2eR
, (11)

Jd∓ = µ (1 ± P)

4eR

∫ ∞

−∞
dω K (ω, V , T )

∣∣ω ± µ∗
B H

∣∣ f±(ω, H,�); (12)
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Jc∓ = µ (1 ± P) �̃

4eR

∫ ∞

−∞
dω K (ω, V , T ) sign

(
ω ± µ∗

B H
)

f±(ω, H,�). (13)

Here

K (ω, V , T ) = tanh
ω

2T
− tanh

ω − eV

2T
, (14)

f±(ω, H,�) = θ
(∣∣ω ± µ∗

B H
∣∣ −�

)
√(
ω ± µ∗

B H
)2 −�2

, (15)

R is the ‘normal state’ (above Td) resistance of the junction, θ(x) denotes the Heaviside theta
function. Note that the signs in the variables ω ± µ∗

B H , involved in the current components,
are inverse to s. It should be borne in mind that the current components depend on the
phase ϕ of �̃ = �eiϕ , whereas the thermodynamic properties of CDW superconductors are
degenerate with respect to ϕ [39, 76]. We suggested that quasiparticles originating from all FS
sections make their contributions to the total current proportionally to the DOS of the relevant
section. That means an absence of any kind of directional tunnelling, which is possible, in
principle [77–82]. Such an assumption may be justified by an inevitable spatial averaging over
CDW domains with different wavevector orientations.

The important difference between the problem at hand and its counterpart appropriate
to the BCS superconductivity is the emergence of the terms Jc∓. They reflect the existence
of the electron–hole pairing [23, 28], originating from the interband Green function Gc (see
equation (9)), and have a different structure to the remaining terms induced by conventional
normal Green functions Gd and Gn (see equations (7) and (8) as well as detailed discussion
in [83, 84]). To a large extent, Gc is analogous to the anomalous Gor’kov Green function
F , which, however, determines a Josephson rather than quasiparticle tunnel current [85]. The
appearance of terms (13) leads to the drastic asymmetry of the CVC of non-symmetrical tunnel
junctions involving CDWMs [84] as opposed to symmetrical CVC for similar non-symmetrical
junctions based on conventional superconductors [86, 87]. In incommensurate CDWMs, the
order parameter phase ϕ is arbitrary [37]. However, to understand the picture qualitatively it
is enough to restrict oneself to the particular case of commensurate CDWs, when ϕ is either 0
or π . Then, relevant equations describe tunnelling between, e.g., excitonic insulators [28, 38],
for which the phase is pinned by the interband four-fermion interaction [88]. In principle,
another situation is also possible, when a tunnel contact area is large enough to span several
zones with varying ϕ. As a consequence, term (13) would be averaged to some extent and
the CVC asymmetry would be substantially reduced. Nevertheless, even then the distinctions
from superconducting junctions would be significant due to the existence of n FS sections.
Henceforth, we shall consider only the most interesting cases with ϕ = 0 or π .

It should be noted that the very existence of the CVC-symmetry-breaking phase-dependent
contributions, such as our term Jc (see also similar terms in [74, 75, 84, 89–98]), to the
quasiparticle current were discarded in some earlier publications dealing with tunnelling
between electrodes with CDWs [99, 100]. In particular, the tunnel current terms dependent
on the left-or right-hand-side ϕs were rejected [99] as artefacts of the tunnel Hamiltonian
approach, because they ‘unphysically’ depend on the CDW location in the bulk. This point of
view is not correct, since the relevant calculations based on the microscopic method [85, 101]
result in wiping out the disputed terms only by means of averaging over the potential barrier
values randomly distributed over the junction plane.

At the same time, a similar procedure can be easily carried out in the simple tunnel
Hamiltonian approach [85, 86]. The validity of our approach stems from the calculations of
the tunnel conductances G(V ) in CDW insulator (CDWI)–I–M junctions [91–93] carried out
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on the basis of the generalized Bogoliubov–de Gennes equations [102], previously applied to
superconductors [103]. (The account of the original Bogoliubov–de Gennes approach can be
found in [15, 101].) It turned out that for the interfacial barrier Wδ(x), where δ(x) is the Dirac
delta function, the phase dependence of the G(V ) is preserved for arbitrary non-zero values
of the dimensionless barrier strength ZBTK = W/h̄vF [91–93]. The tunnel Hamiltonian results
for contacts involving CDWs [74, 75, 84, 94–98] can be straightforwardly reproduced for
ZBTK → ∞, similarly to the situation for superconducting junctions [103]. At the same time,
in the latter case G(V ) does not depend upon the phase ϕ for isotropic superconductors [85],
contrary to what is appropriate to CDWM–I–M junctions. It is remarkable that tunnel junctions
involving anisotropic superconductors demonstrate the dependences of G(V ) on the angles
between the tunnel direction and the crystalline axes [104].

The qualitative distinction between CDW- and superconductor-based junctions consists
in the different meaning of the phase ϕ for the corresponding order parameters. Indeed, the
Fröhlich current density j , associated with the CDW motion, is proportional to the temporal,
t , phase derivative dϕ/dt , whereas the concomitant electron density change δn varies directly
with dϕ/dx , x being the coordinate along the Peierls chain [37, 105]. On the other hand, just the
opposite happens in superconductors (and superfluids): vs ∼ ∇ϕ and ns ∼ dϕ/dt , wherevs and
ns are the superfluid velocity and density, respectively [85, 106]. These distinctions are related
to the fact that superconductors are described by the so-called off-diagonal long-range order
(ODLRO) and Gor’kov Green functions F , while CDWs are described by the diagonal long-
range order (DLRO) and ‘normal’ Green functions G (see the discussion in [23, 28, 38, 107]).
That is why the phase ϕ appears explicitly in the expressions for tunnel currents in CDWI–
I–M and CDWM–I–M junctions [74, 75, 84, 89–98]. The phase is pinned by a boundary
of the CDWI (or the CDWM), thus inducing a position- and phase-dependent force on the
CDW [93, 102]. As was mentioned above, the quantity ϕ for the Peierls insulator may take
an arbitrary value at random. In the excitonic insulator, the randomness also arises but the
choice is restricted to 0 or π . This result is adequately described both by the Bogoliubov–de
Gennes–Visscher–Bauer approach and the tunnel Hamiltonian method. The situation when the
tunnel junction properties are sensitive to the phases of either or both CDW order parameters
is not at all weird. This junction can be considered as an analogue of a Josephson one with
the main difference that the Josephson current flows between two superconductors, while the
quasiparticle current Jc may also link one normal and one CDW electrode. In actual practice,
the tunnel current originates from a CDW superficial area, which, nevertheless, preserves the
CDW properties (see, e.g., [23, 72, 108–110]).

The dependence on ϕ of the quasiparticle current J (V ) in the framework of the tunnel
Hamiltonian approach and when the potential barrier at the interface between the CDWM
(CDWI) and the insulating interlayer is infinite is not at all strange if one looks at this
phenomenon from a more general viewpoint. Indeed, the partial coherence survival obtained in
this work is to some extent similar to the incomplete suppression of the quantum-mechanical
Friedel oscillations [111] at the metal–vacuum interface in the simple non-self-consistent
infinite-barrier [112] and semi-classical infinite-barrier [113] models (see a discussion of the
relationship between these models in [114, 115]). Although metal electrons in the framework
of these models do not penetrate into vacuum, an interface-induced oscillating exchange–
correlation hole does exist in such a metal, so the deviation of the electron density n(z) from
its bulk asymptotics is proportional to 3 j1 (2kFz) /2kFz [112, 116, 117]. Here j1 (x) is the
spherical Bessel function, kF is the Fermi wavenumber and z is the distance from the metal–
vacuum interface. The equation n(z) = 0 holds true at the interface. A similar kind of a hole
also survives in the semi-classical approach when the barrier is finite and electrons spill out
beyond the metal [118]. Of course, the characters of the exchange–correlation hole near the
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interface are different for finite and infinite barrier heights. In particular, n(z = 0) �= 0 for
finite barriers. This means that the phase of the static Friedel wave changes depending on
the interface properties, whereas the quantum-mechanical interference persists. Returning to
the CDWM-based junctions, it is natural to expect that for each type of the barrier the phase
ϕ entering equation (13) should have its proper value. However, the terms Jc∓ should not
disappear unless contributions of different current-carrying channels are averaged out.

Therefore, the phase averaging may or may not occur in specific experiments. But if
it holds, the apparent properties of the tunnel junction are radically modified. It is worth
mentioning that the current component proportional to cos (ϕ1 − ϕ2) in CDWM–I–CDWM
junctions [96, 99, 100, 119] should be averaged out on the same basis as the other phase-
dependent terms, contrary to what was stated in [99, 100]. Nevertheless, if the phases of the
CDW order parameters hold constant in each electrode for the CDWM–I–CDWM set-up or
only one constant phase exists in the corresponding electrode of the CDWM–I–M junction,
the Jc component retains its primordial unaveraged form (see equation (13) and respective
expressions in [75, 119]). There is some evidence that the aforementioned CVC-symmetry-
breaking terms might have already been observed in a number of tunnel structures involving
CDWMs (see the discussion in [23, 84, 120, 121]). In this paper we restricted ourselves to
the ‘pure’ situation, where there is no need to average over the phase values, although the
possibility of the opposite ‘dirty’ case, when Jc totally disappears, should be kept in mind.
We stress that the predicted polarization-dependent spin splitting survives any kind of phase
averaging, including the scenario of different transfer-matrix elements [99, 100].

Conductivities G f s(V ) = d J f s/dV can be obtained by differentiating relevant
equations (11)–(13). At T = 0, the corresponding analytical expressions read

Gn∓(V ) = (1 − µ) (1 ± P)

2R
, (16)

Gd∓(V ) = µ (1 ± P)

2R
sign(V )

(
eV ± µ∗

B H
)

f±(eV , H,�), (17)

Gc∓(V ) = µ (1 ± P) �̃

2R
sign(V ) f±(eV , H,�). (18)

Naturally, the sum of the Gn terms gives the constant (1−µ)
R .

4. Numerical results and discussion

Below, we show the results obtained for the dependences of the dimensionless conductance
Rd J/dV of the CDWM–I–FM junction on the dimensionless bias voltage eV/�0. The
dimensionless parameters of the problem are the reduced external magnetic field h = µ∗

B H/�0,
the reduced temperature t = kBT/�0 and the polarization P . The key result of this paper
is represented by figure 1 for �̃ > 0. It is readily seen that G(V ) is highly asymmetrical,
contrary to the symmetrical patterns appropriate to tunnel junctions involving superconductors
no matter whether those junctions are symmetrical or not [86, 87]. Mathematically this stems
from an almost total compensation between Gd(V ) and Gc(V ) peculiarities at voltages of
one sign and their enhancement at voltages of the other sign (for the adopted choice �̃ > 0,
this means negative and positive V , respectively). In the absence of the external magnetic
field and spin polarization, such an asymmetrical behaviour of G(V ) was obtained by us
earlier [75, 84, 121]. When H is switched on, the electronic DOS peak splits as in the case of
superconductors [1, 17]. The spin splitting is noticeable, however, only for one CVC branch
(V > 0 in the case �̃ > 0—the other branch contains only remnants of the gap-related features;
also see below). Thus, a simple algebraic procedure of Tedrow and Meservey for finding P
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Figure 1. Dependences of differential conductances on the bias voltage V across the tunnel junction
made up of a charge density wave metal and a ferromagnet for various external magnetic fields H .
See the explanations in the text.

from a set of G values measured for certain V and H , successful for S–I–FM junctions [1, 4],
seems to fail for CDWM–I–FM ones, because this method needs the values of conductances on
both voltage branches. Nevertheless, the advantage of the set-up, proposed here for detecting
spin-polarization-induced changes, consists in the amplification of the spin-splitting effect for
one CVC branch and a larger scale of � in comparison to �.

The dependences G(V ) are very sensitive to the value of P . Moreover, they crucially
depend on the sign of �̃ in the CDWM. Let us first consider the case �̃ > 0 (figure 2, panel
(a)). One can see how the phenomenon of spin splitting reveals itself under the action of the
magnetic field when a CDWM constitutes a tunnel junction with a non-magnetic electrode
(P = 0) and how this picture is distorted for a ferromagnetic counter-electrode (P �= 0),
with the minority spin peak, which is positioned further from zero bias than the majority one,
disappearing with increasing P , so that for the complete polarization (P = 1; this limit is
attainable in half-metallic ferromagnets [122–125]) only one (majority) peak survives.

When �̃ < 0 (figure 2, panel (b)), the minority spin peak disappears with increasing P ,
similarly to the opposite case for �̃ > 0, but now it is situated closer to the zero bias than the
majority one. Hence, the ‘modified’ symmetry relationship

G(−�̃, V ) = G(�̃,−V ), (19)

obtained [84, 121] for junctions involving normal or superconducting CDW electrodes and
non-ferromagnetic normal metal counter-electrodes (cf P = 0 curves on both panels) is no
longer valid. Then different signs of �̃ can be distinguished by CVC measurements. It is worth
underlining once more that the actual �̃ sign for a specific junction might occur at random,
induced by unpredictable fluctuations, since the bulk thermodynamic free energy of normal or
superconducting CDW metals does not depend on this sign [39, 76, 126].

One should also bear in mind the possibility of CVC fluctuation-induced ‘symmetrization’
if a hypothetical small extra term δ Ĥ proportional to �̃ sign(eV ) exists in the system
Hamiltonian [75]. Then the measured CVC would consist of different bias branches for
�̃ > 0 and �̃ < 0 cases, respectively. For non-magnetic electrodes, this phenomenon, due to
equation (19), might result in a totally symmetrical CVC (see figure 3, dashed curves). But for
P �= 0, relation (19) is not fulfilled and the non-symmetric form of CVCs becomes unavoidable
(solid curves). The infinitesimal term δ Ĥ ∝ �̃ sign(eV )may lead to an unusual crypto-CDW
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Figure 2. The same as figure 1 but for various polarizations P of electrons on the FM Fermi level.
Panels correspond to different signs of the dielectric order parameter �̃ of the CDWM. See the
explanations in the text.
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Figure 3. The hypothetical ‘symmetrization’ effect for the CDWM–FM tunnel junction. See the
explanations in the text.

situation, when observed CVCs possess almost inconspicuous peculiarities, although the
amplitude � of the CDW order parameter �̃ might be arbitrarily large.

It is obvious that all many-body features discussed above are due to the FS gapping, so
that when the gapping degreeµ decreases, the spin splitting and the very G(V ) peculiarities at
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Figure 4. The same as in figure 1 but for various degrees µ of the Fermi surface gapping in the
CDWM.

-2 -1 0 1 2
0.0

1.0

1.5

2.0

   t =
 0
 0.05
 0.1
 0.2

R
 d

J  
/ d

V

eV / Σ
0

µ = 0.1, P = 0.5, 
h = 0.3, Σ

0
 > 0

Figure 5. The same as figure 1 but for various temperatures T .

eV = �±µ∗
B H are reduced and finally disappear, as is demonstrated in figure 4. The control

parameter µ can be changed in situ, e.g., by an external pressure. Furthermore, CVCs might
be a sensitive probe of µ.

The smoothing effect of the temperature is shown in figure 5. The Zeeman splitting
already becomes unobservable at a relatively small value t = 0.2. However, CDW metals
with Tds of the order of 10–15 K are now available [51, 57] with the corresponding destructive
magnetic fields H ≈ 180–270 kOe,which are attainable experimentally. Hence, the separation
between the gap-induced peaks of G(V ) becomes so large for H slightly below the respective
paramagnetic limit H CDWM

p that temperatures required to detect paramagnetic effects will be
quite reasonable from the technical point of view.

Thus, we have predicted a new type of the tunnel junction, where magnetic field-driven
splitting of the differential conductivity peaks is to appear. The splitting has a paramagnetic
(spin) origin and its very existence is ensured by the correlative gap�appropriate to the material
of one of the electrodes. The spectrum of specific tunnel processes may be very rich because
the current components depend on the CDW phase in this electrode. If the counter-electrode is
ferromagnetic, its polarization P should influence the resulting J (V ) and G(V ) in the manner
similar to but not coinciding with that for the sandwich involving superconductors [1].
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To be certain that the predicted spin splitting can be observed, let us consider the spin–
orbit smearing in 2H-NbSe2 with the superconducting critical temperature Tc = 7.2 K and
Td = 33.5 K [23] and compare it with that in Al where a clear-cut spin-splitting effect
was found [1]. We shall confine the consideration for 2H-NbSe2 to the CDW-induced
peaks only. The spin–orbit scattering in superconductors is governed by a single parameter
b = h̄/(3τso�) ∝ Z 4/�, where h̄/τso is the spin–orbit scattering rate, Z is the material
atomic number and � is the superconducting gap. For Al, ZAl = 13, �Al ≈ 0.4 meV and
bAl ≈ 0.05, while even the value of 0.2 ensures a satisfactory spin splitting of the �-driven
peaks [1, 17]. On the other hand, using the same ideas, b2H−NbSe2 ∝ Z 4

Nb/� for 2H-NbSe2,
where � ≈ 34 meV is the measured dielectric gap [127] and ZNb = 41 (ZSe = 34, which
may only improve our estimation). Assuming the elastic scattering rates to be of the same
order of magnitude in the two materials, we obtain b2H−NbSe2 ≈ 1.2bAl ≈ 0.06. Thus, even if
the spin splitting of the �-induced peaks in 2H-NbSe2 is smeared, that of the CDW-triggered
ones should remain resolved—even more so because the superconductivity- and CDW-induced
CVC peaks are well separated from one another (cf the values of Tc and Td for 2H-NbSe2 quoted
above).

One can indicate several other possible candidates for the CDW partner of FMs in tunnel
sandwiches. These are organic CDW metals α-(ET)2MHg(SCN)4 (M = K, Tl, Rb) [26, 51]
and Per2[M(mnt)2] (M = Au, Pt) [57, 58]. The main weak point of those materials is the
presence of heavy elements Hg, Tl, Au or Pt, which is dangerous because of a possible spin–
orbit smearing of the spin-split G(V ) peaks. A two-leg ladder compound Sr14−x Cax Cu24O41

also seems very promising. Really, Ca doping alters Td and � over a remarkably wide range
from 210 K and 130 meV, respectively, for x = 0 down to 10 K and 3 meV for x = 9 [128].

On the whole, the application of the fruitful ideas, earlier developed for superconductors
[1], to normal partially CDW-gapped metals seems useful for studying those strongly correlated
objects.
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